

Lorentz-Actuated Orbits:

Electrodynamic Propulsion without a Tether

Dr. Mason A. Peck

Cornell University
Sibley School of Mechanical and Aerospace Engineering

Collaborators

Binghamton University James Brownridge

Cornell University
Justin Atchison
Patrick Conrad
Joanna Hinks
Parker Imrie
Mike Kelley
Marianna Kondratovich
Joseph Shoer
Brett Streetman

HANSCOM AFB

David Cooke Adrian Wheelock Shu Lai

Northrop Grumman Space Technologies
Bernard Morgowicz

The Big Idea

- Lorentz-augmented celestial mechanics
- Electrodynamics in a rotating frame
- Fundamental design drivers

FAQ: Designing LAO-capable Spacecraft

- Capacitance
- Plasma interactions
- Power
- System architectures

Some Applications

- Earth escape & Jupiter capture
- Rendezvous and formations
- Surveillance
- Interstellar spacecraft

Experimental Program

The Lorentz force accelerates charged particles traveling in a magnetic field. Can it be used to control the motion of a spacecraft?

- For example, Burns, Schaeffer, et al.; Cassini, Voyager data
 - Measurements show that Lorentz resonances determine structures in the rings of Jupiter and Saturn
 - Micron-size particles
 - A few volts of potential

The Idea: a Lorentz-Actuated Orbit (LAO)

The Lorentz force accelerates charged particles traveling in a magnetic field. Can it be used to control the motion of a spacecraft?

- It's not an electrodynamic tether
 - Current in a tether interacts with the geomagnetic field: J×B
 - Electrons traveling at cm/sec through a conductor
 - This spacecraft's charge is a current (high charge at high speed): qv×B
 - LAO propulsion is attitude-independent; the spacecraft can be much more compact and is capable of higher-agility attitude motion

– Lorentz Force, as you've seen it before:

$$\boldsymbol{F} = q\boldsymbol{E} + q\boldsymbol{v} \times \boldsymbol{B}$$

- But B rotates with the planet
 - Rotating frame G; inertial frame N
 - Position *r* and angular velocity of G w.r.t. N φ^{G/N}
 - Classically, orbital velocity is inertial:

$$\mathbf{v} = \frac{^{\mathrm{N}}d}{dt}\mathbf{r} = \frac{^{\mathrm{G}}d}{dt}\mathbf{r} + \boldsymbol{\omega}^{\mathrm{G/N}} \times \mathbf{r}$$

 This distinction matters because the rotating B acts as an electric field in N (the "co-rotational" field).

Fundamental Design Principles

$$a = \frac{q}{m} \mathbf{v} \times \mathbf{B}$$

Acceleration depends on charge-to-mass ratio q/m

Maximize q/m

- Maximize q
- Minimize m
 - High-density charge storage
 - Lightweight power (high "specific power" W/kg)

Fundamental Design Principles

Charge depends on self-capacitance and potential

- Maximize capacitance
 - Geometry of conductors
 - Space charge within insulators (e.g. electrets)
- Maximize potential
 - Emit charged particles with high energy
 - Electrons, positrons, ions, alpha particles...

Power depends on rate of particle expulsion (beam current) and the particle potential (beam energy)

Ambient plasma discharges the spacecraft

- A continuous current is required to combat discharge
- Minimize current to minimize power
 - Current above the incident plasma currents does not help
 - Exploit natural processes (e.g. alpha decay) that requires no input power via solar array et al.

FAQ: Designing LAO-capable Spacecraft

How much charge do you need?

FAQ: Designing LAO-capable Spacecraft

How is charge established and maintained?

- Natural charging (due to plasma interactions and/or photoelectric effect) can't offer more than a few kV.
- Large SC require hundreds of kV if the capacitance is small
 - Spherical shell is an example
 - · Emit ions or electrons via a plasma contactor
 - Electron emission is a little easier and lighter, and it requires no propellant
- Overcome discharge into the plasma
 - Power required depends on altitude, area, space weather...

Self-capacitance

- The spacecraft body, or part of it, holds a net charge

Conductive Spherical Shell

Volumetric Electret Capacitor

Single-Filament Capacitor

Differential LF

Plasma Interactions

- The key sizing parameter is charge per unit mass (q/m), which is proportional to the acceleration (Δv) available
- Charge depends on capacitance
- For a spherical spacecraft surrounded by plasma,

$$C \approx 4\pi\varepsilon_0 \frac{R(R + \lambda_{De})}{\lambda_{De}}$$

- Where λ_{De} is the Debye length, ~the thickness of an oppositely charged sheath that surrounds the charged body.

High-Voltage Sheath Requires Careful Modeling

Comparison of 10m Spherical Capacitance in 1200K LEO Plasma for three Sheath Thickness Models

FAQ: Capacitance

Cornell University

We have adapted NASA's NASCAP software to calculate the total charge on a body in Earth orbit

FAQ: Designing LAO-capable Spacecraft

Cornell University

Doesn't the Debye Sheath Cancel the Lorentz Force?

- NO

- The charge in the sheath is equal in magnitude and opposite in polarity.
- Forces on the sheath are transmitted to the spacecraft via Coulomb interaction.
- But particles in the sheath do not travel with the spacecraft.
- So, the sheath does not feel the Lorentz force.

Particles' velocity is more-or-less fixed in the plasma, which travels with the geomagnetic field

Power-Plasma Interactions

- Ram current from plasma determines power requirement
- Cross-sectional area of spacecraft+sheath
 - Constitutes a kind of Coulomb drag (not significant)
 - Encounters charged particles that spiral inward toward the spacecraft (significant)
 - High potential -> high ram currents
- Spacecraft can charge to a potential equal to the beam energy
 - Power is required to expel charge at a rate that at least matches the ram current, at the spacecraft surface potential (P=IV)

plasma

- FYI
 - Polar LEO electron current: negative 6×10⁻⁶ 6×10⁻⁵ A/m²
 - Polar LEO ion current: positive 4×10⁻⁸ 4×10⁻⁷ A/m²

Cornell University

Preferred Solution

- Charge negative to repel electrons.
- Emit α or β- particles via an isotope undergoing natural decay.
- Maintain a compact geometry to minimize surface area that collects plasma current.

5.3 MV available from α particle emission

5 kW - 50 kW

Available from 0.1 - 1 kg of ²¹⁰Po for 1 year

Power required to maintain a meter-scale spacecraft at high potential

For much higher q/m or lower power or no ²¹⁰Po...

- Sweeper magnet
- Deflect incident ions before they adhere to the spacecraft's surface
- Reduce power to 1%-10% of current predictions

 Even higher performance is possible if electrons can be deflected toward the spacecraft

Attempt to bound worst-case design metrics

- Evaluate feasibility
 - Helps identify required technology advancements
- Use spherical shell as a low-risk, high TRL technology
 - Represents least efficient charge-storage method
- Consider ion beam power and sphere radius as metrics
- Use worst-case charging power (Shuttle SEPAC results)

• Probably 10x conservative q(t)

Earth Escape

- It takes about 1 year for a q/m=5
 C/kg spacecraft to escape earth orbit, with appropriate phasing of charge with true anomaly.
- This level of charge represents high risk for the spherical-shell architecture because the plasma behavior is unknown, but its prospect inspires other technical solutions like electrets.
- Specs for a sphere:
 - 100 kg spacecraft
 - 5 MV potential
 - r=50 m sphere

Jupiter Capture

- Jupiter's magnetic field is about 20,000 times more powerful than Earth's.
- Its faster rotation (once every 9 hours) means that the corotational field can contribute energy to an LAO quickly.
- For q/m=0.01 C/kg, a spacecraft can transition from a parabolic orbit at Jupiter to the orbit of Ganymede in a little over a year.

– Specs for a sphere:

- 1000 kg spacecraft
- 440 kV potential
- r=15 m sphere

Altitude above Jupiter (R_i=71,492 km) during 472 Day Orbit Insertion

Rendezvous

- The potential function for an LAO alters Kepler's equation.
- Charge one spacecraft, or each of a pair, and one will catch up to the other at the same altitude.
- Retrograde orbits catch up faster because the velocity in G is greater.
- Specs for a sphere:
 - 1 year rendezvous (worst case)
 - 10 kg spacecraft
 - 62 kV potential (6.2 kW)
 - r=4 m sphere

$$\omega = -\frac{q}{m}B_0 \frac{r_0^3}{r^3} \pm \frac{\sqrt{\left(\frac{q}{m}B_0 r_0^3\right)^2 + 4r^3 \left(\mu + \frac{q}{m}\omega_e B_0 r_0^3\right)}}{2r^3}$$

Time to Rendezvous (years) in Circular Orbit; q/m=0.001 C/kg

LAO Formations

LAO spacecraft in a formation do not interact through Coulomb forces

$$r = \sqrt[3]{\frac{1}{\omega^2} \left(\mu - \frac{q}{m}(\omega - \omega_e)B_0 r_0^3\right)}$$

- Spacecraft with different electrical potentials and orbital altitudes can orbit with the same period.
- New formations (3D paraboloid sparse-aperture telescope?)

Vertical Spacing for Circular Prograde Orbits: q/m=0.001 C/kg

– Specs for a sphere:

- 10 m vertical separation in LEO
- 10 kg spacecraft
- 10 kV potential (1 kW)
- r=3 m sphere

Surveillance Application: LEOSynch

- Geosynchronous LEO spacecraft.
- Persistent coverage of a single longitude.
- Re-task a satellite to reach any longitude on Earth within 6 hours.

$$\left(\frac{q}{m}\right)_{GT-1} = \frac{\omega_E r^3}{B_0}$$

- Specs for a sphere:
 - 100 kg spacecraft
 - 5 MV potential (5-50 kW)
 - r=75 m sphere or ~10 km of filaments or ~10 kg thin-film electret material

Surveillance Application: LEOSynch

 In general, quickly precessing polar orbits

$$\frac{q}{m} = \frac{\dot{\Omega}_{avg}r^3}{B_0}$$

- Cancel J₂
- Sun synchronous at many altitudes and inclinations
- Geosynchronous at LEO altitude!

$$\left(\frac{q}{m}\right)_{GT-1} = \frac{\omega_E r^3}{B_0}$$

$$F = qv \times B$$

Continuous Lunar Free-return Trajectory

- Earth-moon-earth once per orbit
- Apollo-era solution for astronaut safety (cf. Apollo 13)
- Lunar resupply and/or science

$$\frac{q}{m} = \frac{\dot{\omega}_{des} a^3 (1 - e^2)^{3/2}}{2B_0}$$

~55 C/kg

- Specs:
 - 10,000 kg spacecraft
 - 340 MV potential (!)
 - r=400 m sphere

Multilayer MEMS

Very Small Interstellar Spacecraft

- Spacecraft on a chip: "SpaceChip"
- Orbit dynamics approaches that of charged dust grains
- Earth escape at plasma floating potential (no power!)
- Planetary-scale cyclotron

 Ricochet between Earth and Jupiter in a series of LAO flybys (requires a means of modulating charge)

Bursty transmissions

• v > 0.01c?

– Specs:

- 10 mg spacecraft potted in ITO
- 2V-20kV floating potential
- Optional filaments for added capacitance

CMOS camera (?)

Very Small Interstellar Spacecraft

- Mission architectures
 - Billions relay data from distant locations
 - Very low bandwidth
 - Need to continually populate pipeline
 - A single chip encodes or transports a sample of human genome

Important Phase I Conclusions

- NIAC Phase I study shows that an LAO is even more feasible than we originally thought
 - Formations & rendezvous are near-term possibilities
 - Others require higher capacitance per mass
 - A technology path may exist for extraordinary far-term applications
- The plasma environment can be managed
 - The plasma sheath helps by slightly increasing capacitance and lowering (or eliminating) electrostatic pressure
 - The plasma sheath does not cancel the Lorentz force
 - Relevant applications can be achieved in the near term (sphere specs bound power & size at the high end)

Future Directions

Scaled tests of capacitor geometries

- The spherical conductive shell concept solves many problems, including ESD.
- Electret tests continue
- Filament curvature vs. capacitance
- Hairy spheres

- Perform plasma simulation and scaled testing

- Detailed evaluation of phenomena at high potentials, including effects such as surface imperfections.
- SUNY Binghamton tests
- HANSCOM AFB tests
- SpaceChip demo

Lorentz-Actuated Orbits:

Electrodynamic Propulsion without a Tether

Backup Materials

FAQ: Power

Preferred Solution

- lon or e-beam emission powered by traditional sources requires very high specific power (W/kg), like ion propulsion.
- Acceptable specific power is available from natural emission of α or β particles by radioisotopes (NOT an RTG application or nuclear fusion).
 - ²¹⁰Po, formed by neutron bombardment of Bi, emits 5.3MeV particles.
 - \$100/g, commercially available and used in deionizers
 - 138 day half life; becomes lead (stable)
 - 90 kW/kg after 1 year
 - Thin film on the surface of a sphere or filaments
 - Thermal implications only when the film is >thickness of paper
 - Other materials are under consideration.
- This high specific power is available only because of the unique application.
- This solution provides q/m>1.0, enabling many exciting applications.

FAQ: Designing LAO-capable Spacecraft

What is the impact on other subsystems?

- Structural and Mechanical Requirements for the Sphere Concept:
 - Conductive
 - Acts as a Faraday cage, shielding components from differential charging
 - Transparent for solar power (unless nuclear power is possible)
 - Deployable (note that the charge inflates it)
 - Electret may be a MUCH better solution
- Payload Options
 - · Has to work through a conductive shell
 - Maybe off until the spacecraft is in its operational orbit
- T&C Options
 - Lasercomm through the sphere
 - Antenna protrudes through sphere (ESD issues)
- Attitude Control
 - Little direct impact (the Lorentz force is independent of attitude)
 - Differential charge acts like a gravity-gradient effect, offering a means of attitude control (that's another project...)

NASCAP analysis agrees with theory

- We're interested in the case of E=0
 - Debye shielding masks E from neighboring bodies (e.g. spacecraft)-more later.
 - Time-varying B (due to solar wind) represents an E which may matter and we will address in future work
- The Lorentz force becomes

$$\boldsymbol{F} = q \frac{\mathrm{G}}{dt} \boldsymbol{r} \times \boldsymbol{B}$$

because the co-rotational field in the rotating frame is zero

An LAO's energy is not constant in an inertial frame

– Consider an equatorial elliptical orbit: $B |_{\boldsymbol{\omega}^{\text{G/N}}}$

$$E = -\frac{\mu}{2a}$$

$$\dot{E} = \dot{a} \frac{\mu}{2a^2} = \frac{^{\rm N}d}{dt} \mathbf{r} \cdot d\mathbf{F}$$

$$\dot{a} = \frac{qB}{m} \frac{2a}{\mu} r \dot{r} \omega_e$$

An LAO steals a little energy from a planet's rotation, like a flyby steals some from its orbit

An LAO's energy is not constant in an inertial frame

– Earth's spin imparts a component along v, adding energy

